
Few years back, I was working on a Demand forecasting project where I was dealing with thousands of combinations of Brand-SKU-Store combination. The challenge was to improve existing accuracy to provide better forecasts of each SKU at a store level. Even if you are dealing with 100 SKUs and 200 stores there will be 20,000 combinations and you can’t selectively pick a model for each combination. We tried various individual techniques such as ARIMA, ETS, UCM, NN, and many more but couldn’t meet the accuracy benchmark. Then one of my seniors introduced me to the OPERA package and asked me to research and optimize it for our needs. I successfully implemented it and today I will talk about the same package with detailed R code.
Continue reading →